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Abstract

Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 is responsible for a new coronavirus disease
known as coronavirus disease-19 (COVID-19). SARS-CoV-2 reports neurotropic properties and may have
neurological implications, and this creates another health burden for people living with HIV. As yet, the impact
of COVID-19 on (neuro)inflammation and the development of HIV-associated neurocognitive disorders
(HAND) is not fully known. Here, we reviewed preliminary evidence that provides clues that COVID-19 may
exacerbate inflammatory mechanisms related to the development of HAND.
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Introduction

HIV-associated neurocognitive disorders (HAND)
are consequences of the effects of HIV-1 within the

central nervous system (CNS).1,2 HAND are classified ac-
cording to impairment severity, namely, asymptomatic neu-
rocognitive impairment, mild neurocognitive impairment, or
HIV-associated dementia.3,4

In the modern antiretroviral therapy (ART) era, the more
severe forms of HAND have significantly decreased, how-
ever, milder forms are persisting in 50% of people living with
HIV (PLWH).5 Currently, the underlying neuropathophy-
siological mechanisms of HAND remain unclear. However,
the common hypothesis for the persistence of HAND in the
modern ART era is the continued immune activation and
low-grade inflammation experienced by PLWH.6 Regardless
of viral suppression and CD4 count, HIV-positive partici-
pants report dysregulated inflammatory levels and the dys-
regulated levels are associated with HAND.7–11

Therefore, low-grade neuroinflammation may be a key
pathway in the development of HAND. What are the impli-
cations for the development of HAND if another virus were
to enter the CNS, eliciting a major immune response such as a
cytokine storm and exacerbating the current low-grade in-
flammation in PLWH?

Since the first reported coronavirus disease-19 (COVID-19)
case in December 2019, several studies have reported on the

neurological implications of COVID-19.12–18 Among several
neurobiological mechanisms, increasing evidence suggests
that COVID-19 may have an underlying neuroinflammatory
pathology. Considering the large global (37.9 million) and
African HIV populations (25.6 million),19 it is important to
assess the potentially detrimental effects of COVID-19 in
these populations. This is especially true for neurocognitively
impaired PLWH. The purpose of this review was to assess the
potential contribution of COVID-19 to (neuro)inflammation
and the development of HAND in PLWH.

HAND and (Neuro)inflammation

The neuroinvasion of HIV-1 into the CNS is explained by a
widely accepted ‘‘Trojan-horse hypothesis’’ which states that
HIV-1 is able to cross the blood/brain barrier (BBB) through
infected monocytes, which later differentiate into macro-
phages.20,21 HIV-1 is then able to act via several direct22–24 and
indirect mechanisms25,26 to induce neuronal dysfunction and
HAND. The neuropathogenesis of HIV-1 is well explained in a
review done by González-Scarano and Martı́n-Garcı́a.2 This re-
view focused on (neuro)inflammation, considering that it is a key
pathway in the development of HAND in the modern ART era.

Once HIV-1 enters the CNS, it can further infect resident
macrophages and microglia.27–29 HIV-1 may also activate
astrocytes, macrophages, and microglia resulting in an in-
flammatory phenotype that contributes to neuronal damage
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and the development of HAND.2,25 Dysregulated inflamma-
tory levels were reported in the blood,9,30 cerebrospinal fluid
(CSF),31,32 and postmortem brain tissue33,34 of cognitively
impaired PLWH, supporting the role of aberrant immune
regulation in the development of HAND.

Even with the introduction of ART, inflammatory levels do
not return to that matching HIV-negative controls35 and this
low-grade inflammation may explain the persistence of
milder forms of HAND. Inflammatory markers can impact
neuronal health through several mechanisms. As an example,
tumor necrosis factor-a (TNF-a) can induce BBB damage,
which results in increased migration of infected cells into the
brain,36 dysregulate glutamate metabolism,37–39 form reac-
tive oxygen species,40,41 and apoptosis in neurons.42 There-
fore, inflammation may directly contribute to neuronal
dysfunction and the development of HAND. Furthermore,
the presence of another virus within the CNS may contribute
to the dysregulated inflammatory profile and exacerbate the
development of severer forms of HAND.

Coronaviruses and (Neuro)inflammation

Although human coronaviruses (hCoVs) typically cause
various respiratory diseases, coronaviruses (CoVs) are some-
times linked with CNS diseases such as multiple sclerosis and
acute disseminated encephalomyelitis.43–47 CoVs can target
the CNS and cause nerve damage through direct infection
pathways (viz blood circulation48 and neuronal pathways49,50),
hypoxia,51 immune-mediated injury,52,53 angiotensin-
converting enzyme 2 (ACE2),54,55 and other mechanisms
(e.g., biological properties of the CNS).56,57 However, this
review focused on those mechanisms most relevant to the
indirect underlying pathways of HAND (i.e., inflammation).

Middle Eastern respiratory syndrome-CoV and severe
acute respiratory syndrome-CoV

Middle Eastern respiratory syndrome (MERS)-CoV was
first linked to MERS in 2012.58 Patients initially showed
nonspecific symptoms, with general malaise, low-grade fe-
ver, chills, headache, nonproductive cough, dyspnea, and
myalgia the most commonly reported.59 However, several
case reports have also linked MERS-CoV infections to var-
ious neurological disorders, including neuropathy, delirium,
and acute cerebrovascular disease.60–62 A larger study of 70
MERS patients also reported neurological symptoms, with
the most common listed as confusion (18/70) and seizures
(6/70). Unfortunately, there is little evidence for the presence
of the MERS-CoV in the CSF from patients, making the
association between MERS and neurological symptoms
tenuous at the moment.63

The first case of severe acute respiratory syndrome
(SARS)-CoV was reported in China, November 2002.64 Pa-
tients generally presented with chills, headaches, muscular
pain, diarrhea, and pneumonia.65,66 Cases were also reported
for neurological complications, which included seizures,
dysphoria, vomiting, and stroke.44,67–69 Evidence suggests
that SARS-CoV can cross the BBB, as viral RNA was de-
tected in the CSF44,67 as well as postmortem brain tissue.68

Even for SARS-CoV, these are rare clinical presentations,
and, in some cases, these neurological symptoms could be
possibly linked to a differential diagnosis. However, the de-
tection of viral SARS-CoV RNA—unlike what is reported for

MERS-CoV—in both CSF and autopsied brain tissue points
to a neurotropic component for SARS-CoV infections.63

CoVs generally target epithelial cells of the respiratory and
gastrointestinal tract70 as these cells contain the ACE2 re-
ceptor, which is utilized by the virus to enter the host cell.
However, invasion is not limited to these cell types alone.
The ACE2 is expressed in several brain regions, including the
brain stem, subfornical organ, rostral ventrolateral medulla,
nucleus of the tractus solitarius, and paraventricular nucle-
us.71 Furthermore, ACE2 was found in both neurons and
glia.71–73 Therefore, SARS-CoV may directly infect cells of
the CNS and contribute to neuronal dysfunction. However,
SARS-CoV may also affect neuronal health through indirect
methods.

The pathology of SARS-CoV has been linked to inflam-
mation. In SARS-CoV-infected mice, elevated levels of
inflammatory cytokines were observed, including interleu-
kin (IL)-6, interferon (IFN)-c, chemokine ligand (CCL)2,
and CCL12.74–76 Experimental investigations showed that
the replication and accumulation of SARS-CoV were inte-
gral causes of the elevated levels of inflammatory chemo-
kine markers in wild-type mice.77 In SARS-CoV-activated
monocytes and granulocytes, alarmin expression was up-
regulated resulting in increased chemotaxis,78 and this
primes the cerebral microenvironment for inflammatory
processes.79 It was also found that in SARS-CoV-infected
patients, genes encoding for lipocalin-2 (an acute-phase
protein) were upregulated.78

In addition to the possibility of glia and astrocytes used for
viral replication, resident CNS cells are involved in
neuroinflammation.80–82 Astrocytes and microglia exposed
to CoVs (mouse hepatitis virus) showed that the severity of
neurovirulence of the virus associated with its ability to in-
duce the proinflammatory cytokines IL-12 p40, TNF-a, IL-6,
IL-15, and IL-1b.83 Glial cells of a SARS-CoV-infected pa-
tient who developed severe CNS invasion reported elevated
monokine induced by IFN-c [MIG/C-X-C motif chemokine
ligand (CXCL)9] cytokine levels.68 Brain sections showed an
intense inflammation with CD68+ macrophage infiltration,
neuronal necrosis, diffuse brain edema, and reactive gliosis.68

Moreover, viral proteins were detected by immunohisto-
chemistry in brain neurons and astrocytes.68 Furthermore,
CXCL10/IP-10 and CXCL9 were elevated in the blood of this
patient.68 Taken together, these studies suggest the potential
involvement of both glia and astrocytes in the neuroin-
flammatory processes of SARS-CoV. Due to the novelty of
COVID-19 (SARS-CoV-2), findings from these studies may
provide clues to the neuroinflammatory mechanisms of
SARS-CoV-2 and COVID-19.

Severe acute respiratory syndrome-coronavirus-2

A CoV classified as SARS-CoV-2 is responsible for a new
CoV disease known as COVID-19.84 COVID-19 frequently
presents as a pneumonia syndrome, with symptoms including
fever, dry cough, and breathlessness reported most often.84 Even
though complications associated with the respiratory system are
the most common and life-threatening in COVID-19, increasing
evidence suggests that COVID-19 pathophysiology may also
involve the central and peripheral nervous systems.63

A retrospective study of a possible neurological compo-
nent to COVID-19 looked at data from more than 200
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individuals in China. Due to an as yet unknown cause,
patients—in particular those with severe COVID-19—
exhibited symptoms that included impaired consciousness,
skeletal muscle injury, hypogeusia, hyposmia, and acute ce-
rebrovascular disease. Unfortunately, at the time of publi-
cation, all patients were still hospitalized and the association
between these neurological symptoms and patient outcome
could not be investigated.85

In another study, Li et al. report the development of acute
cerebrovascular disease, including ischemic stroke, cerebral
venous sinus thrombosis, and cerebral hemorrhage in a co-
hort of 13 COVID-positive patients. Interestingly, here again,
the neurological symptoms were more common in severe
cases of COVID-19, and also in older patients.86 A third
study, this time from France, also reports various neurolog-
ical and neuropsychiatric illnesses in 84% of 58 COVID-19-
positive patients admitted to hospital with acute respiratory
distress syndrome (ARDS). For this cohort of patients with
severe COVID-19, the authors report neurological features
that include evidence of encephalopathy, corticospinal tract
dysfunction, agitation, and delirium. Moreover, two patients
had evidence of a small acute ischemic stroke.87

Likewise, many individual case reports describing the de-
velopment of acute neurological disorders in COVID-19-
positive patients, ranging from Guillain–Barré syndrome88–96

to meningoencephalitis,97 ischemic stroke,98 acute necrotizing
encephalopathy,99 and acute hemorrhagic necrotizing en-
cephalopathy,97,99,100 are now being published.

How, and if, SARS-CoV-2 infects the CNS in patients has
still not been proven definitively. However, Baig et al. have
speculated that ‘‘SARS-CoV-2 neurotropism occurs via a
circulatory and/or an upper nasal trancribrial route.’’ This
would enable the virus to reach the brain, where it then binds
and engages with the ACE2 receptors via the spike protein,
followed by entry into the brain.101

On the contrary, in vitro studies are now showing that
SARS-CoV-2 can infect and cause pathologies in brain orga-
noid models. In a very recent study, pseudotyped SARS-CoV-
2 viral particles were reported to infect human embryonic stem
cell-derived brain organoids, as well as monolayer cortical
neurons.102 In another in vitro model of human brain orga-
noids, evidence of SARS-CoV-2 infection—with accompa-
nying metabolic changes in the infected and neighboring
neurons—was reported.103 Interestingly, it was suggested that
SARS-CoV-2 preferably targets the soma of cortical neurons,
but not neural stem cells, and that SARS-CoV-2 exposure is
associated with missorted Tau from axons to soma, hyper-
phosphorylation, and apparent neuronal death.104 These too
are suggestive of neurodegenerative-like effects.

What are the possible mechanisms of the various neuro-
logical symptoms linked to severe COVID-19? Groups
speculate that mechanisms could include the following: (1)
direct viral neuronal injury; (2) a secondary hyperin-
flammation syndrome; (3) para- and postinfectious inflam-
matory or immune-mediated disorders; or (4) a severe
systemic disorder with neurological consequences; these
mechanisms could possibly act either individually or in
combination.105–107 On the contrary, even with the mount-
ing evidence, not all researchers are convinced by the data.
As an example, Larvie et al. question the interpretation of
the data and the conclusions made in the report by Helms
et al., speculating that the findings ‘‘may not definitively

indicate a specific syndrome of brain involvement associ-
ated with SARS-CoV-2.’’87,108

The neuropathogenesis of COVID-19 is not clearly
understood, however, SARS-CoV-2 belongs to the same
beta-CoV clade of the previously reported SARS-CoV and
MERS-CoV.109 SARS-CoV-2 also shares several similarities
to that of SARS-CoV and prior research of SARS-CoV may
provide insight into COVID-19. Similar to SARS-CoV, the
neuroinvasion of SARS-CoV-2 into the CNS may be by
ACE2.110,111 The SARS-CoV-2 receptor-binding domain
(RBD) has a higher ACE2 binding affinity than SARS-CoV
RBD. The ACE2 binding affinity of the entire SARS-CoV-2
spike is comparable with or lower than that of SARS-CoV
spike, which suggests that the SARS-CoV-2 RBD, although
more potent, is more occluded than the SARS-CoV RBD.

Compared with SARS-Co-V, cell entry of SARS-CoV-2 is
preactivated by proprotein convertase furin, and thus, SARS-
CO-V-2 has reduced dependence on target cell proteases for
entry. These suggest that SARS-CoV-2 may maintain effi-
cient cell entry while evading immune surveillance.112 This
may explain why SARS-CoV-2 may be a more virulent strain.
It has also recently been suggested that SARS-CoV-2 may use
integrins as an alternative cell receptor into host cells. SARS-
CoV-2 may bind to integrins via a conserved RGD (403–405:
arginine/glycine/aspartate) motif that is present in the RBD of
the SARS-CoV-2 spike protein. This motif is present in all
SARS-CoV-2 sequences analyzed to date.113

The findings for the presence of SARS-CoV-2 within the
CSF have been contradictory. Certain studies show that
COVID-19 patient CSF samples were polymerase chain re-
action negative for the presence of SARS-CoV-2,87,114–116

whereas others report SARS-CoV-2-positive CSF find-
ings.97,117,118 Furthermore, SARS-CoV-2 was detected in the
capillary endothelial and neuronal cells of frontal lobe post-
mortem brain tissue.119 These findings are similar to that
reported for SARS-CoV, supporting the potential of the virus
to breach the BBB. In patients recovering from ARDS and/or
pneumonia, a large number experience cognitive impairment
with impaired functional status, often persisting months after
hospital discharge.120,121 This may suggest an underlying
neuropathology and it is postulated that neuroinflammatory
processes may also be associated with such neurological
complications in COVID-19 patients.122,123

SARS-CoV-2 causes a surge of inflammatory cytokines
also known as the cytokine storm syndrome (CSS). Systemic
CSS results in a significant release of cytokines, chemokines,
and other inflammatory signals. CSS may damage the BBB,
which allows further infiltration of cells into the CNS re-
sulting in an amplified neuroinflammatory process.123,124 The
immune dysregulation125 caused by SARS-CoV-2 results in
upregulation of several genes that enhance proinflammatory
and oxidative responses, resulting in inflammatory stress78

and cytokine storm.84,126,127

SARS-CoV-2 is responsible for the persistent release of
inflammatory markers, including IL-1b, IL-1, IL-2, IL-4, IL-
6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, IL-18, IL-33,
granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), macro-
phage inflammatory protein-1A (MIP-1A), MIP-1B,
macrophage colony-stimulating factor (M-CSF), TNF-a,
transforming growth factor-b, IFN-a, IFN-b, IFN-c, and
chemokines, including CCL2, CCL3, CCL5, CCL7, CCL12,
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CXCL8, CXCL9, and CXCL10, which are ultimately re-
sponsible for the development of CSS.84,128–132

Moreover, the levels of inflammatory markers are related to
the severity of COVID-19 infection, with elevated plasma
cytokines/chemokines IL-1b, IFN-c, CCL2, and IP-10 linked
to mild-to-moderate cases and elevated levels of TNF-a, IL-8,
IL-10, G-CSF, CCL2, MIP-1A, and IP-10 related to severer
cases.84,133 Several studies also reported elevated levels of
C-reactive protein (CRP) in COVID-19 patients.134–136 It was
also found that VEGF (immune-related marker associated with
inflammation) is dysregulated in COVID-19 patients, and
could possibly be related to neuroinflammation and BBB
damage.137 Interestingly, in the majority of studies, IL-6 is
elevated in COVID-19 patients.17,84,133,138–140

It is speculated that SARS-CoV-2 may activate resident
astrocytes and glial cells. Currently, there is no evidence for
the SARS-CoV-2 presence in astrocytes, however, there is a
possibility for infection, activation, as well as astrocytes
being viral reservoirs as shown in several studies of
CoVs.48,68,83,141,142 Similar to other neurotropic viruses,53

SARS-CoV-2 may similarly induce the production of in-
flammatory markers such as IL-6 from glial cells that result in
CSS.83 SARS-CoV-2 within the CNS activates CD4+ cells, in
turn inducing macrophages to secrete IL-6 by producing GM-
CSF.130 The effect of SARS-CoV-2 on cells of the CNS is
incompletely known, however, based on findings of other
CoVs, SARS-CoV-2 may significantly increase inflamma-
tion within the CNS.

Potential Contributions of COVID-19
to (Neuro)inflammation in PLWH

Should COVID-19 contribute to (neuro)inflammation, what
may this mean for patients with HAND who already experi-
ence dysregulated (neuro)inflammatory levels?7,9,10,30,143

Preliminary evidence suggests that COVID-19 may exacer-
bate systemic and neuroinflammation, with common findings
reported for IL-6. IL-6 is a predominant component of CSS and
the pathway of IL-6 dysregulation may be important in the
pathophysiology of COVID-19.144,145 Prior HIV studies found
dysregulated peripheral8,146,147 and CSF148 IL-6 levels to be
associated with HAND. The effect of SARS-CoV-2 within the
CSF may result in significantly higher levels of IL-6, which
may negatively affect neuronal health in coinfected PLWH.

It was also shown that HIV-positive participants have el-
evated GM-CSF in CSF149 and these elevated levels are as-
sociated with HAND.148 Alternative markers which may also
be dysregulated in patients with COVID-19, include
CRP,134–136 VEGF,137 and lipocalin-2.78 CRP is an inflam-
matory marker that has also been associated with domain-
based and global HAND.150 VEGF is suggested to regulate
neuroinflammation and BBB dysfunction in COVID-19.137 A
prior study in PLWH reported that elevated CSF levels of
VEGF were associated with HAND.151

Furthermore, lipocalin-2 gene expression was upregulated
in SARS-CoV patients and may similarly be reflected in
patients with SARS-CoV-2.78 Previous work done by our
group and others reported that peripheral lipocalin-2 levels
were elevated in HIV-positive participants, and were asso-
ciated with domain-based neurocognitive impairment152

and thinner bilateral orbitofrontal cortex.153 Furthermore,
lipocalin-2 was upregulated in the neocortex of HIV-

positive participants with brain pathology.154 Therefore, the
upregulation of lipocalin-2 due to COVID-19 may have
detrimental effects in PLWH and HAND. Overall, the effects
of COVID-19 may further add insult to injury by contributing
to the dysregulated (neuro)inflammatory profile in PLWH.
This may increase the likelihood of participants developing
severer forms of HAND (i.e., HIV-associated dementia).

Anticytokine therapies and/or immunomodulators are
considered potential therapeutic strategies to target the
overactive cytokine response. This may provide relief for
systemic inflammation, but will the same apply for therapies
with limited CNS penetration? Even though a study has
shown that treatment with the anti-IL-6 drug, tocilizumab
(IL-6 receptor blocker), resulted in improvement of critically
ill COVID-19 patients,155 it may have limited benefit in the
CNS if the brain is a viral reservoir for SARS-CoV-2.156 In a
clinical trial of tocilizumab for residual symptoms in
schizophrenia,157 results found no evidence that affects be-
havioral outcomes in schizophrenia. One potential explana-
tion was the inability of this agent to penetrate the CNS.

Even though unlikely, another concern for SARS-CoV-2
coinfected PLWH is that the presence of SARS-CoV-2 could
potentially result in an immune activation that may promote
the reactivation of latent HIV.158 The immune system may be
activated by SARS-CoV-2 antigens, which may promote the
reactivation of latent HIV as indicated by the appearance of
HIV in ART-experienced PLWH (HIV surge). The HIV
surge may increase the HIV reservoir and inflammatory
profile and further accelerate the course of HIV-associated
comorbidities (e.g., cognitive disorders).

Findings for studies between CoVs and HIV are contradic-
tory. Initial studies reported that SARS-CoV159 and MERS-
CoV160 coinfected HIV patients have a lower risk of CoV
infection and progression to severe disease. However, the
mechanisms responsible for this are not understood and it is not
clear whether HIV replication may interfere with CoV repli-
cation and/or the effect of ART on CoV disease progression.159

It was shown that immunosuppressed (low CD4 counts) HIV-
positive participants may be protected from developing the
cytokine storm observed in patients with COVID-19.161

Opposing views have also been argued and reported that
neither the CD4 count162 nor the use of specific antiretroviral
drugs161–163 affected the SARS-CoV-2 severity or infection
rate. Limited findings exist for studies of SARS-CoV-2 and
HIV in general164 and no studies at this time for SARS-CoV-
2 and HAND. Due to this, there is still much controversy and
uncertainty, which require further investigation. There is a
need for clinical and preclinical studies assessing the fol-
lowing: (1) CoV disease progression in PLWH in general, (2)
the effect of ART on CoV disease progression, (3) the im-
mune response (e.g., inflammation) in coinfected partici-
pants, and (4) the inflammatory response of CNS cells
exposed to SARS-CoV-2.

Conclusions

Here we reviewed the potential contributions of COVID-
19 to the development of HAND. Recent findings suggest
that (1) COVID-19 has neurological implications, (2) CoVs
(including SARS-CoV-2) may elicit a significant systemic
immune response, and (3) may cross the BBB. Last, it may
be speculated that CoVs (including SARS-CoV-2) may
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similarly elicit inflammatory responses within the CNS and
this may exacerbate neuroinflammation in PLWH. Therefore,
COVID-19 may exacerbate the underlying neuropathology
contributing to the development of severer forms of HAND.
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81. Bachiller S, Jiménez-Ferrer I, Paulus A, et al.: Microglia
in neurological diseases: A road map to brain-disease
dependent-inflammatory response. Front Cell Neurosci
2018;12:488.

82. Colombo E, Farina C: Astrocytes: Key regulators of
neuroinflammation. Trends Immunol 2016;37:608–620.

83. Li Y, Fu L, Gonzales DM, Lavi E: Coronavirus Neuro-
virulence Correlates with the Ability of the Virus To In-

duce Proinflammatory Cytokine Signals from Astrocytes
and Microglia. J Virol 2004;78:3398–3406.

84. Huang C, Wang Y, Li X, et al.: Clinical features of pa-
tients infected with 2019 novel coronavirus in Wuhan,
China. Lancet 2020;395:497–506.

85. Mao L, Jin H, Wang M, et al.: Neurologic manifestations
of hospitalized patients with coronavirus disease 2019 in
Wuhan, China. JAMA Neurol 2020;77:683–690.

86. Li Y, Li M, Wang M, et al. Acute cerebrovascular disease
following COVID-19: a single center, retrospective, observa-
tional study. Stroke Vasc Neurol 2020:279–284.

87. Helms J, Kremer S, Merdji H, et al.: Neurologic features
in severe SARS-COV-2 infection. N Engl J Med 2020;
382:2268–2270.

88. Esteban Molina A, Mata Martı́nez M, Sánchez Chueca P,
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